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A consistent slender-body approximation is developed for the flow past a fish- 
like body with arbitrary combinations of body thickness and low-aspect-ratio 
fin appendages, but with the fins confined to the plane of symmetry of the body. 
Attention is focused on the interaction of the fin lifting surfaces with the body 
thickness, and especially on the dynamics of the vortex sheets shed from the 
fin trailing edges. This vorticity is convected by the (non-lifting) flow past the 
stretched-straight body, and departs significantly from the purely longitudinal 
orientation of conventional lifting-surface theory. Explicit results are given for 
axisymmetric bodies having fins with abrupt trailing edges, and calculations of 
the total lift force are presented for bodies with symmetric and asymmetric fin 
configurations, moving with a constant angle of attack. 

1. Introduction 
The analysis of flows past slender yawed bodies with lifting-surface appendages 

has been of interest to hydro- and aerodynamicists for a wide variety of applica- 
tions. The treatments of this subject in aeronautical engineering are well 
documented (cf. Thwaites 1960)) but that development of the theory is essentially 
limited to rigid-body motions and, more importantly, to configurations of the 
body and appended planar lifting surfaces wherein the vorticity shed from the 
trailing edges does not interact downstream with the body or with subsequent 
appended lifting surfaces; hence the lift distribution depends only on the local 
added-mass coefficient of the body cross-section, and appended planar lifting 
surfaces of low aspect ratio are included simply by computing their influence on 
the added-mass coefficient of the relevant body cross-section as, for example, in 
the case of a finned circle. 

Interest in the theory of fish propulsion has led to a renewed activity in this 
branch of aerodynamics. Lighthill (1 960) developed the unsteady slender-body 
theory for arbitrary lateral undulations of the body, in the absence of appended 
lifting surfaces and shed vorticity, and showed that the classical aerodynamic 
results remain valid in this case with a differential lift force proportional simply 
to the rate of change of the product of the added-mass coefficient and local body 
velocity, as measured in a fixed reference frame. This theory has been extended 
by Lighthill (1970), Wu (1971) and Wu & Newman (1972) to allow for a body 
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FIGURE 1. Geometrical configurations of a fish, yacht hull (with image 
above the free surface) and submarine. 

with appended low-aspect-ratio lifting surfaces, situated in the centre-plane of 
symmetry normal to the lateral motions of the body, and with varying degrees 
of generality in the lifting-surface-body-thickness configuration. However, these 
generalizations are incomplete in the sense that either the body thickness is 
ignored, or alternatively it is treated in an inconsistent manner which does not 
account properly for the interaction of the ‘sidewash’ effect of the changing body 
form on the outboard trailing vortices shed from upstream appendages. It is 
our objective here to remove this deficiency, and to present a unified slender- 
body theory capable of embracing a wide variety of configurations, and subject 
only to the assumptions which follow consistently from slenderness, the neglect 
of viscous effects, and linearization of the lateral body motions. (An approach to 
the case of nonlinear motions has been outlined by Lighthill 1971.) We note also 
that the assumption of ‘slenderness’ requires not only that the body geometry 
is slowly varying in the longitudinal direction, but that its lateral motions do not 
change rapidly along the same direction; in other words, the wavelength of 
undulatory body motion must be large compared with the transverse dimensions 
of the body. This last restriction is discussed more explicitly by Lighthill (1970). 

In  addition to its application to the theory of fish propulsion, the present 
subject arises also in connexion with the horizontal manoeuvring of sailing 
yachts and submarines. For the yacht hull the keel corresponds to the side fin 
of the fish, and the rudder downstream to the fish caudal fin, as shown in figure 1. 
For this analogy to be valid, one must treat the free surface by a simple reflexion 
or image approach, so that the yacht’s underbody and image constitute a sym- 
metrical form moving in an otherwise unbounded fluid. A more detailed study 
along these lines, applying a preliminary version of the present theory, has been 
presented by Milgram (1972). The application to submarine manoeuvring is more 
obvious, since there is no consideration of the free surface required, but in this 
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case it is generally necessary to consider the effects of asymmetry of the vertical 
lifting surfaces. 

After a statement of the boundary-value problem in $ 2 ,  the general solution 
will be constructed in $ 3. The Kutta condition of bounded velocity at the trailing 
edges plays a critical role in this solution, and is treated in $ 4 for the special case 
of abrupt trailing edges, whereas the difficulties associated with a ‘ slant’ trailing 
edge are outlined in $5 .  The differential lift force acting on a transverse body 
section is derived in $ 6, and in 3 7 computations of the totaI lift force are presented 
for a body having axisymmetric thickness and abrupt trailing edges. 

2. The boundary-value problem 
Cartesian co-ordinates (x, y ,  z )  are employed, with the x axis coincident with 

the longitudinal body axis in the ‘ stretched-straight ’ position of steady forward 
motion and the origin fixed with respect to the mean position of the body. 
Hence, with the body nose at x = - IN and tail a t  x = l,, a steady streaming flow 
with components ( U ,  0,O) is incident upon the body, as shown in figure 2 (a)  
below. We assume the body to be symmetrical about the (vertical) plane of 
symmetry x, y, with thickness 2g(x, y), but, in general, asymmetric about the 
horizontal plane x, z. Planar appendages are situated in the vertical plane of 
symmetry, above and/or beneath the body ‘hull’ or ‘fuselage’ where the thick- 
ness is distributed. The projection of the body with appendages on the x,  y plane 
will be denoted by the curves y = - b,(x) and y = b,(x). 

The unsteady motions of the body are described by a lateral displacement 
z = h(x, t )  and, with the usual assumptions of ideal flow, the fluid motions by the 
(positive) gradient of avelocitypotential $(x,  y ,  x ,  t )  which is governed by Laplace’s 
equation in the fluid domain. This potential satisfies a kinematic boundary con- 
dition on the body, a dynamic boundary condition on the vortex sheets, and tends 
to the free-stream potential Ux a t  large distances away from the body and its 
trailing vortices. In addition, we must impose a Kutta condition proscribing 
unbounded fluid velocity components at the trailing edges. 

Before developing the above boundary conditions in detail we note, following 
Lighthill (1960), that “in this problem it is almost essential to make a transforma- 
tion of co-ordinates, so that the body becomes a fixed surface - for, otherwise, 
there are severe difficulties due to applying boundary conditions a t  a surface 
whose position is displaced in a direction in which gradients are specially steep ”. 
In  essence, the difficulty stems from the fact that the unsteady normal velocity 
on the body is affected not only by the velocity of the body, but also by its 
displacement in the steady-state velocity field. This problem has been discussed 
in detail by Timman & Newman (1962), who derive a consistent linearized 
kinematic boundary condition to be applied on the mean position of the body 
surface in the Eulerian reference frame (x,y,z). However, that approach is 
cumbersome, and for the problem at hand we follow Lighthill (1960) and use 
‘ stretched-straight ’ co-ordinates ( X ,  Y ,  2) which are fixed in the body and defined 
by the transformation 

X =x, Y =y, 2 = z - h ( x , t ) ,  T = t ,  (2.1) 
43-2 
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so that 
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The velocity potential Q, is defined by the transformation 

and from (2.2) the Laplace equation becomes 

The body surface 8, may be defined by the equation 

z - h(x, t )  T g(x, y) = 0 on S,, (2.5) 

where the T signs correspond to the tiwo sides of the body. Thus, in transformed 
co-ordinates, 

and the kinematic boundary condition may be written as DFIDt = 0,  where 
D/Dt is the substantial derivative (a/at + V $  . V ) .  Transforming this operator 
gives the kinematic boundary condition 

F ( X ,  Y ,  2) = 2 T g ( X ,  Y )  = 0 on f i b ,  (2.6) 

- ~ ~ ~ ~ + ( O X - h ~ Q , z ) ( ~ ~ - h ~ ~ ~ ) + Q , ~ ~ ~ + Q , z ~ z =  0 on 8,. (2.7) 

Finally, we write Bernoulli's equation for the pressure in the form 

P - P a  = -p$t-*p[V$.V$- uzl 
= -p(OF - hFaZ) - +$[(ax - hxQz)2 + @,"y + Q,Dg - uy. (2.8) 

Before proceeding further we invoke the dual assumptions that (i) the body is 
slender and (ii) the lateral motion h(x, t )  is a small perturbation of the stretched- 
straight motion h = 0. Prom the slenderness assumption, say 6 < I is a parameter 
such that, in the inner region near and on the body surface, ( Y , Z )  = 0(6),  
whereas X = O(1). It follows that, in this same region, (a/aY,a/aZ) = O(S-l), 
whereas a/aX = O(1). From the second assumption, we write the potential in 
the form 

Q, = ux + O,(X, Y ,  2) + Q,',(X, Y ,  2, T ) ,  (2.9) 

where U X  + Oo is the potential for steady flow past the stretched-straight body 
and Ol is the lateral-motion contribution. From classical slender-body theory 
we note that 

whereas we anticipate that 
Q,, = 0(6210g6), (2.10) 

(Dl = O(6h). (2.11) 

(This estimate can be verified a posteriori.) 
Substituting in Laplace's equation (2.4) it follows that, to leading order, 

OD,,, + QOZZ = 0, (2.12) 

@lYY + Q l Z Z  = 0, (2.13) 
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where the error is a factor 1 + O(S210g S, Sh, h2) in the first equation and a factor 
1 + O(S2, Sh, h2) in the second. Proceeding in a similar manner, the kinematic 
boundary condition (2.7) gives, for the stretched-straight case h = 0, 

@oyFy + @ozF’+ UPx = 0 on (2.14) 

and, subtracting this from (2.7) and retaining linear terms in h, 

(2.15) 

as the boundary condition for @,. 
As observed by Lighthill (1960), equation (2.15), with the Laplace equation 

(2.13)) is the boundary-value problem for an unsteady potential 0, due to motions 
of a two-dimensionaI cylinder, whose cross-section 2, is the intersection of S, 
with the plane X = constant, and which moves in the Z direction with velocity 

V ( X ,  5”) = h, + Uhx (2.16) 

subject to the condition that CD, -+ 0 a t  large distances from the cylinder. How- 
ever, in the present problem an additional dynamic boundary condition is re- 
quired on Che vortex sheets, and for this purpose we note from Bernoulli’s 
equation (2.8) that 

P - P m  = -P[U@ox + iH@& + WZ)1 - P [ @ 1 ,  + U@,x  + Q O Y  @IF 

+ @OZ(@IZ - Vl + O(h2, S4) 
= Po +Ply (2.17) 

say. Here po is the linearized stretched-straight pressure, andp, the leading-order 
lateral-motion pressure. For the latter it should be emphasized that the cross-flow 
products OOu Oly + CDoZ(@lz - V )  are of comparable order to D@., = C D I T  + U@,,, 
so that in this way there is an interaction between the two flow fields which will 
affect, in particular, the dynamics of the trailing vorticity. 

In  view of the symmetry of S b  about the 8 axis, it follows from (2.14) that 
@,, will be an even function of the variable 8, whereas from (2.15) @, will be an 
odd function of Z. Hence the pressure pl is odd and from continuity of pressure 
across the vortex sheet wake S,, pl = 0 on 8,. Noting that QOz vanishes on 
this plane, we obtain the condition of continuous pressure across S, in the form 

D@,+@oyCD1y = 0 on 8, (2.18) 

and, since @, must be continuous outside S,, 

@,= 0 on S,, (2.19) 

where AS, is the complementary portion of the plane 2 = 0 outside AS’,++,. 
Equation (2.18) is the appropriate dynamic boundary condition on S,, and it 
can be interpreted physically by the statement that vorticity is convected by 
the steady flow components ( U ,  Q o y ,  0). Thus CD, is constant in a reference frame 
moving with these velocity components or, mathematically, (2.18) can be 
integrated along the characteristics ( U ,  QOp) in the X , Z  plane to yield the 
condition 

@.,(X, Y ,  0 k , 5”) = @,(X,, Y%, 0 2 , T*) on 8,. (2.20) 
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Here X, and Y* denote (upstream) co-ordinates of the steady streamline passing 
through ( X ,  Y )  -for example, at  the trailing edge-and T* is the retarded time: 

T* = T - ( X - X * ) / U .  (2.21) 

Thus, for the problem a t  hand, the trailing vortices are convected along the 
stretched-straight streamlines, and the retarded potential @* must be defined 
in accordance with this fact. We emphasize that this interaction between the 
body thickness and the vortex sheets is a consequence of the consistent slender- 
body approximation of Bernoulli’s equation, and it is not valid to assume that 
the linearized vortex filaments will be parallel to the X axis, unless the body 
thickness is zero or locally independent of X. The treatment of this ‘sidewash’ 
effect is the principal contribution of the present paper, by comparison with the 
earlier paper of Wu & Newman (1972)) where for the sake of expediency the cross- 
flow terms in Bernoulli’s equation were neglected. 

The remaining conditions to be imposed are the Kutta condition 

VQl < co at trailing edges (2.22) 

and ( @ , , @ , ) - + O  for IY+iZI-tco or X +  -a. (2.23) 

The last condition states that the body disturbance vanishes a t  infinity, except 
possibly in the downstream direction X + co where, in general, trailing vorticity 
will be present. This completes the statement of the linearized boundary-value 
problem for Q1. Since, a t  this point, only first-order quantities are involved in 
the unsteady parameter h, we can consistently replace ( X ,  Y ,  2, T )  by the former 
co-ordinates (x, y, x, t ) ,  and the corresponding potentials by 

(2.24) 

and A(x, Y, z, t )  = @I@, y ,  2, TI. (2.25) 

Moreover, since the potential satisfies the two-dimensional Laplace equation 
(2.13)) in the transverse ‘cross-flow) planes x = constant, it then follows that 

(2.26) 

where the complex potential f(<,x,t) is an analytic function of the complex 
variable 6 = y + ia. We note from symmetry that Re [f(<)] = - Re [f(c)] and hence 

fee, = -RE), (2.27) 

where the bars denote complex conjugates. Finally, the boundary condition 
(2.15) can be expressed in the form 

a($-- Vx)/an = 0 on 8, (2.28) 

Y, x, t )  = Re ($4- i?‘h = Re (f), 

and hence, from the Cauchy-Riemann equations, 

~ ( y ,  z, x, t ,  = - v(x,  t ,  y f t ,  On sb, (2.29) 

where the constant of integration $,isarbitrary. Thus by (2.26) = Re (f ),where 
the real part of the complex potential f is specified on the plane of symmetry 
outside the body [equations (2.19) and (2.20)], and the imaginary part is specified 
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FIGURE 2. ( a )  The plan-form of a finned slender body, showing the tip vortices situated at 
y = -al(z)  and y = az(z). (b )  The cross-flow plane in physical co-ordinates. (c) Mapped 
co-ordinates; in both cases the vortex sheets are indicated by dashed lines. 

on the body by equation (2.29). This Riemann-Hilbert problem is completed 
by the statement (2.22) of the Kutta condition and of vanishing of the potential 
a t  infinity (2.23). 

3. Solution of the boundary-value problem 
The body cross-section C, a t  each station x will consist, in general, of a thickness 

portion and planar fins, situated on the real axis of the complex plane < = y + iz .  
The projection of the contour Zb on the y axis is the segment - b,(x) 6 y 6 b,(x). 
Downstream of the trailing edges, trailing vortex sheets will be situated outboard 
of C, on the y axis, extending from the body at T b,(x) to the tip vortices situated 
a t  the points T a,(%). In these regions the parameters ai(x) are the y co-ordinates 
of the stretched-straight streamlines ( U ,  &,, 0) which coincide with the fin tips 
at  maximum span points, and hence y = ai(x) are the positions of the two tip 
vortices in the x, y plane. It is convenient for the subsequent analysis to extend 
this definition of ai(x) by stating that, in leading-edge regions where there is 
no upstream trailing vortex sheet, and also downstream if the leading-edge span 
is greater than the upstream tip vortex, ai(x) 3 b,(x). Hence the contours 
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y = - al(x) and y = a2(x) define the boundaries of the body-vortex-sheet combina- 
tion in the x, y plane, as shown in figure 2 .  

To proceed further it is expedient to map the entire fluid domain outside Z b  
onto a complex plane q = qr+iqi, with the body contour mapped onto the slit 
-p(x)  < qr < p(x )  and the remaining portions of the y axis onto qi = 0,  lqrl > p. 
The body-plus-vortex-sheet boundaries T ai(x) are then mapped onto the curves 
qr = T ai(x), and on leading-edge regions without trailing vortices ai = p. The 
conformal transformation is defined as 

5 =  C(q;x)  01‘ 7 = q(5;4, (3.1) 

d{/dq-+ 1 as 161 -+a. (3.2) 

(3-3) 

and T a&) = q( T a&); x) (i = 1,2). (3.4) 

where C(q; x) is an analytic function of q for every x, satisfying the conditions that 

From the definitions of T ai and it follows that 

T p(x) = q( T b,(x); x) (i = 1,2) 

We note that for simplicity in the subsequent equations the body has been 
mapped onto a symmetrical slit, which generally implies a translation of the 
origin, so that the image of the x axis will not be a straight line in the x, qr plane, 
unless the body is symmetrical. Finally (3.2) implies that 

m 

Y =  5+ Z Cn(x)5? as 151 -+m, (3.5) 
n=O 

where the coefficients cn(x) are real by virtue of the body symmetry in z. 
It is convenient to keep the complex potential f = q5 + i$ invariant under the 

conformal transformation (3.1), i.e. f ( { )  = f([(q)). The kinematic boundary con- 
dition on the body surface then follows from (2.27), and may be transformed 
directly into the mapped-plane variables. However, the dynamic boundary 
condition for q5 following from (2.20) is 

$(y k io, x, t )  = $(y* & io, x*, t * )  = 5 q5*(y, x, t )  on S,. (3.6) 

Here the retarded potential $* is the value of q5 at the retarded time t,, but at  
that point on the trailing edge with co-ordinates (x,, y+) which coincides with the 
same streamline ( U ,  $o?l, 0) as the field point (x, y, 0). (Note that y, = - b,(x,) 
on the lower trailing edge, and y* = b2(x,) on the upper trailing edge.) 

The boundary conditions on the complex potential can now be expressed in 
terms of a Riemann-Hilbert problem and stated as follows: on the real axis 
q i = o + ,  

0 for -a < qr < -al(x),  (3.7) 

* 4*(% x, t )  for - a,@) < T r  < - P W ,  (3.8) 

(3.9) 

Re(f )  = { 
Im(f)  = - ‘VY(?,) + $o(x, t )  for - P ( 4  < Yr < P ( 4 ,  

(3.10) 

(3.11) 



Generalized slender-body theory for Jish-like forms 681 

The boundary conditions (3.7)-(3.11) must be supplemented by the Kutta con- 
dition on trailing edges and by the condition f -+ 0 as 161 -+ co. 

The solution of this problem in the absence of vortex sheets, i.e. when ai = P, 
is the ' elementary ' function 

f = fe = iP[(y2-P2)~-!:-c0(x)], (3.12) 

since (3.12) satisfies (3.7), (3.9) and (3.11) and by virtue of (3.5) vanishes at  
infinity. When vortex sheets are present, a complementary solution f, must be 
added to give the total potential 

f = f e  +fc, (3.13) 

where f, satisfies the following conditions on vt = 0: 

(3.14) 

(3.15) 

(3.17) 

(3.18) 

Using Hilbert transform techniques (cf. Muskhelishvili 1953, p. 92), a particular 
solution of (3.14)-(3.18) is 

and this solution will vanish at  infinity if 

The solution defined by (3.12), (3.13), (3.19) and (3.20) is 

(3.20) 

valid for all body 
regions, since the complementary function f, as defined by (3.19) and (3.20) 
vanishes identically on leading-edge regions where ai = ,8. In  regions of trailing 
vorticity, the complementary solution is non-zero, and is determined entirely by 
the retarded potential $* at the upstream trailing edges. It remains, however, t o  
determine the value of this parameter so as to satisfy the Kutta condition on the 
trailing edges. To this end a distinction must be made between 'abrupt' trailing 
edges and 'slant' trailing edges, the former being perpendicular to the x axis, 
and hence representing a step-function reduction of the span, whereas the slant 
trailing edges are defined as all other cases involving a continuous reduction in 
span (relative to the width of the trailing vortex filament) with increasing 
downstream distance. The abrupt case is relatively straightforward to analyse,? 
and will be treated in § 4; the difficulties associated with the slant-trailing-edge 
geometry are described in 9 5. We emphasize here that for the present purposes 
a trailing edge is a sharp-finned or cusped region of the body contour, the span of 

t I n  this case a weak Kutta condition is imposed, by requiring that the velocity potential 
be continuous at the trailing edge. As in the analogous case of low-aspect-ratio planar foils, 
this will result in a local singularity of the pressure, unless the semi-spans b,(z) and body 
thickness are locally stationary a t  the trailing edge. 
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which is decreasing (strictly speaking, relative to the span of the stretched- 
straight streamlines), whereas there may also occur a region where the body 
contour is smooth, without sharp edges, and contracting in thickness as along the 
afterbody of a smooth body without fins. In  the latter case of a smooth body 
contour, the imposition of a Kutta condition is not required, since the cross-flow 
velocity (in the physical plane) will be finite by virtue of the local zero in the 
derivative of the mapping function a t  these points. 

4. The case of abrupt trailing edges 
At an abrupt trailing edge, perpendicular t o  the x axis, the Kutta condition is 

satisfied by requiring that the potential be continuous across the trailing edge. 
The elementary or leading-edge solution f,, defined by (3.12)) will be discon- 
tinuous, however, as a result of t h e  step-function discontinuity in the parameter 
p(x ) ,  and this discontinuity must be absorbed in the complementary solution f,. 
From the dynamic boundary conditions (3.15) and (3.17) it is clear that this 
will be true, provided that the retarded potential q5* at the trailing edge increases 
by an amount equal and opposite t o  the decrease in the real part off,. Noting 
that Re (f,) = 0 downstream of the trailing edge, outboard of the body slit 
( -P, P) ,  it follows that q5* may be determined at the Jirst trailing edge by the 
equation 

&(r*,x*,t*) = lim - V(x,t,)(P2-q$)* = - V(x*,t,)(p,2-r$,)&, (4.1) 

where denotes the value of p immediately upstream of the trailing-edge 
discontinuity. For the symmetric case, where both opposite trailing edges are 
a t  the same value of x = x*, equation (4.1) remains valid. 

A t  subsequent abrupt trailing edges one must use the more general relation 

x+x* - 0 

$*(a*, x*7 t * )  = lim Re ( f e + f J  
z+x* - 0 

= - V(x*, t*) fP~-rt ts+Ref , (r*,x*, t*f .  (4.2) 

#*(r, x, t )  = #*(r*, x*, t*) for -“1 < 3 < -p, P < q < “2, (4.3) 

Equation (3.6) may be rewritten in the mapped variables as 

with (7,”) and (y*,x*) defined to lie on the same streamline of the stretched- 
straight flow. Equations (4.11-14.3) then serve to det;ermine the unknown #, 
in (3.19) and (3.20) and the solution for f, is complete. 

5. Slant trailing edges 
On a slant trailing edge, b,(x) and p ( x )  are continuous, generally decreasing, 

functions of x. In this case 4% must be determined so that the complex velocity 
f ’(<) is bounded a t  T b,, or such that, as the trailing edge(s) are approached, say 
on the positive side of the foil z = 0 + , 

Ref(r, 5, t )  = - q5*( T P7 x, t )  + ow- l a / ) .  (5.1) 
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In  particular, the solution (3.19) for f ,  must be determined such that there is no 
term in (5.1) proportional to (7 f P)*. From the theory of Hilbert transforms 
(Muskhelishvili 1953, pp. 73-4) it is well known that the function f,, as defined 
by (3.19), tends to the limiting value 

Re [fh, x, t ) l+-  $*( T P, x, t )  (5 .2 )  

on the upper side of the cut 171 < P, as 7 -+ 5 P. However, this estimate is not 
sufficient to satisfy the Kutta condition (5. 1), and $* must now be suitably chosen 
to ensure that the o(1) remainder in (5.2) cancels the square-root term in f,, 
so that the total potential satisfies (5.1). 

First, let us consider the limiting value off, as given by (3.19), at the lower 
trailing edge, as 5 -+ - P + 0. After adding and subtracting the quantity $*( - P )  
in the integrand, it follows that 

+ i$ ,O(X,  t ) ,  (5.3) 

where the (regular) term fYc0 is given by (3.20). On the second line of (5.3), the 
integrals over the domains ( - co, - P )  and (P, co) may be evaluated (cf, Erd6lyi 
1954, equation 15.2 (23)) to yield the quantity 

7~(/?2--2)-4 for 171 < P. 

Hence this contribution to (5.3) gives precisely the leading-order regular term 
$* in (5.1) and (5.2), and it is the remainder of (5.3) which must be examined. 
But in the remaining integrals the limit 7 -+ -Pis regular and hence it follows that 

where the regular terms include contributions from $* and $co. Adding the 
square-root term from the expression (3.12) for f,, it follows that the Kutta 
condition will be satisfied a t  6 = -P if, and only if, 

0 = nrrV - {terms in braces in (5.4)). (5 .5 )  

Hence the Kutta condition has been stated as an integral equation for $* along 
the trailing edge. By taking advantage of the expression 

(5.6) 

and integrating by parts, (5.4) and (5.5) can be replaced by the simpler integro- 
differential emation 
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where the condition $*( T ai) = 0 has been used from (3.7) and (3.1 1). Performing 
a similar analysis for the opposite trailing edge at  7 = + p gives the corresponding 
equation 

Finally, adding and subtracting (5.7) and (5.8) gives the 
eauationi 

alternative pair of 

(5.9) 

These two integro-differential equations must be satisfied, but subject to the 
additional constraint that $*(y, x, t )  varies, as a function of x and t, so as to satisfy 
the dynamic condition (3.6). The only case where a closed-form solution of (5.9) 
appears feasible is that of an uncambered planar foil at  constant angle of attack, 
with zero thickness and with symmetric trailing edges. Then, with a1 = a2 = con- 
stant, (5.9) can be reduced to an Abel equation with the solution 

$*(7, x, t )  = - V(a2- 72)k 

For the more general case of a planar foil, with asymmetric trailing edges and 
arbitrary V ( x ,  t), an integral expression for $* can be inferred from Wu & Newman 
(1972, equation 7.30). 

6. The differential lift force 
The lift force can be obtained directly from pressure integration over the body 

surface, but a simpler approach is to use momentum conservation so as to relate 
the differential lift force to the asymptotic form of the velocity potential a t  large 
distances away from the body cross-section &. Here we follow Lighthill (1960, 
appendix) in adopting the latter approach, and show that his analysis is readily 
generalized to treat the case where lifting surfaces and trailing vortex sheets 
are present. 

As in 9 2, we use ‘stretched-straight ’ co-ordinates X = x, Y = y, Z = z - h(x, t )  
and T = t in order to perform the pressure integration over the oscillating surface 
of the body. The linearized differential lift force follows from (2.17) in the form 

9 ( X )  = p,dY = - p  $ La [@lT + U@lX + @ O F  @ l Y  + @OZ(@IZ - V)l d y, 
.%+L 

(6.1) 

where the contour integral has been extended to include the vortex wake con- 
tours C,, since the pressure is zero on &, and no contribution to the integral in 
(6.1) results from that change. 

Now consider the ‘generalized added-mass ’ integral 
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where C,, is the extension of 2, out to the maximum span co-ordinate, the width 
of Zwo being independent of X ( O1 vanishes on Z,, outside 2,). Then 

DA = AT+UAx 
n 

Noting that, on &, F, dX + FP d Y + Fz dZ = 0,  it follows that 

u(aepx),=,o,,,d~ = - = c@oz+ @ o Y ~ F ~ ~ z i d y  

=@ozdY-@,,dZ on &. (6.4) 

In  its last form (6.4) holds also on Xwo, since both sides vanish in this plane. 
Substituting in (6.3) yields the expression 

To show that the last integral vanishes, we first rewrite the boundary condition 
for CD, on in the form 

V@oz d Y = @oz d Y + @,z @IF (B’F/Fz) d Y 
= <Do, @,, d Y - Q0z @,, d2 .  (6.6) 

Since QOz and dZ vanish on C,,, this relation can be used on X b  + Ew0 to give 

(6.7) 

Here E, is the domain exterior to the contour Z;b+Cw0, and we have used the 
facts that 0, and are regular outside this contour and the products of their 
first derivatives vanish more rapidly than I Y + i2I-l a t  infinity. Performing the 
indicated differentiations and invoking Laplace’s equation, the integrand of the 
last integral vanishes, and we obtain the desired result 

To express this in terms of the far-field behaviour of the velocity potential, we 
now employ the complex potential (2.26), noting once again that (6.8) contains 
only first-order terms of O(h).  Thus we replace (6.8) by the equation 
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Then, sincef(b) = # + i$ satisfies the symmetry condition (2.27), it follows that 

$,dz = $$ay = 0, (6.10) 

whereas, from the boundary condition (2.29) and the fact that the stream function 
is continuous across Cw, 

= - V X ( X ) ,  (6.11) 

where X is the cross-sectional area of the body. Using these results, it follows that 
r 

(6.12) 

Since f is analytic outside C, + &,, this contour can be deformed to a new one at  
large 5, where f possesses a Laurent expansion of the form 

W 

(6.13) 

and the coefficients dn(x, t )  are all real, by virtue of the symmetry relation. Finally, 
by residue theory, 

L?(x, t )  = 27rpDd,(x, t )  +pD( VX). (6.14) 

In order to use (6.14), we return to the solutionf = f e + f c ,  which was derived 
in $33  and 4. The dipole moment associated withf, is, from (3.12) and (3.5), 

(6.15) 

Thus, on leading-edge regions where f, = 0, the differential lift force is 

9,(X,t) = 27rpD[V(C1--~2)]+pD(VX). (6.16) 

Alternatively, we may recall (cf. Batchelor 1967, p. 403) that the dipole moment 
d,, is related to the added-mass coefficient m(x) for lateral acceleration of the 
body contour C, by the relation 

277d,, = V(X+rn/p) ,  (6.17) 

so that 9, = -D(mV),  (6.18) 

in agreement with the earlier results of Lighthill (1960). The dipole moment 
associated with the complementary solution f, is, from (3.19), 

The corresponding contribution to the differential lift force is 

(6.19) 

(6.20) 
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Equation (6.20) yields the differential lift force due to the presence of trailing 
vortex sheets. It is valid for quite general bodies with abrupt or slant trailing 
edges, but if the values of #* are used from $4, the results are limited thereby to 
the abrupt trailing-edge configuration. In any event the value of x, t )  
can only be computed if the stretched-straight streamlines ( U ,  &,) are known 
on the plane z = 0, and this restricts our subsequent discussion to simple body 
forms, such as planar foils without thickness (where the stretched-straight 
streamlines are parallel to the x axis), and axisymmetric thickness distributions 
(where slender-body theory yields the value of #,,g in a relatively simple form). 
These specific cases will be discussed further in $ 7. 

Before leaving the more general discussion of (6.20), it may be compared with 
the simpler equation of Lighthill (1970, equation 25), which in the present 
notation may be written as 

%@, t )  = - D[fi(X) VX,, t*)l. (6.21) 

Here fi(x) is defined by Lighthill as "the virtual mass associated with the vortex 
sheet in the presence of a completely stationary cylinder (7%'' (i.e. the body 
contour Xa). Lighthill does not evaluate fi(x), except in the special case of a flat- 
plate body without thickness. From the Kutta condition (4.1) and our equation 
(6.20), it follows that, for a body with a single or symmetric pair of abrupt trailing 
edges a t  x = x*, Lighthill's parameter k ( x )  may be evaluated from the formula 

(6.22) 

However, we emphasize that, in general, this integral will depend not only on 
the longitudinal position x at which the lift force is to be determined, but also 
on the entire body geometry between this position and the trailing edge a t  x9, 
and, in particular, on the body shape at  x*. (In the special case of a body with 
axisymmetric thickness and abrupt trailing edges, as will be shown in $ 7, the 
integral (6.22) depends only on the body shape at  xand x+.) 

7. Discussion and illustrative examples 
In the preceding sections we have outIined a consistent slender-body theory 

for lateral motions of slender fish-like bodies having both thickness and planar 
lifting appendages, with particular emphasis on the interaction between the 
body thickness and lifting effects. This interaction is of importance only for those 
regions of the body where the trailing vortices shed from the trailing edges exist 
outboard of the body sections with non-zero thickness, but in these regions it is 
necessary to account for the deformation of the trailing vortices by the body- 
thickness-induced streamlines. Indeed, one consequence of this is that the 
vortex shed at  the intersection of the trailing edge and the body will follow the 
body surface downstream, whereas in the earlier model of Wu & Newman (1972), 
in which the trailing vortices remained parallel to the free stream, gaps resulted 
between the inboard vortex and the body surface. Physical considerations suggest 
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that the gap model may be more appropriate for a relatively flat body with small 
amounts of thickness, since in the limiting case of a flat planar foil the trailing 
vortices will indeed be parallel to the x axis; but, on the other hand, for a body 
with substantial thickness the present approach appears to be more consistent 
both from the mathematical standpoint (i.e. the cross-flow terms in Bernoulli’s 
equation are of comparable magnitude to the usual linear derivatives in t and x) 
and from the physical standpoint, where Kelvin’s theorem suggests that the body 
surface is a material surface and hence must coincide with any free vorticity 
which is originally on this surface. Transition between these two complementary 
approaches will presumably occur as the size of the body thickness is changed, 
and the question of how thick the body must be may be regarded as analogous 
to the question of how sharp the trailing edge must be in order to impose a Kutta 
condition. 

The calculation of the differential lift force in $ 6  is the most important practical 
result of our analysis. It is shown that, upstream of the first trailing edges, the 
differential lift force is proportional to the rate of change of the product of the 
virtual mass and body velocity, as was well known from earlier studies. But on 
subsequent downstream portions of the body, at or beyond trailing edges and 
including the possibility of new leading edges, an additional lifk force results and 
can be interpreted physically as the interaction of the body section with the 
downwash induced by the trailing vortices. (For a flat plate with constant angle 
of attack, it is precisely this downwash effect which results in zero loading on the 
low-aspect-ratio foil downstream of the maximum span position. Indeed, in a 
branch of lifting-surface theory where the role of the Kutta condition is rarely 
explicit, we emphasize that this unloading is a logical consequence of imposing 
the appropriate Kutta condition at  the trailing edge.) 

As a relatively simple illustration of our results, we shall evaluate the total lift 
force on a finned body of revolution, with abrupt trailing edges, for the case of 
steady motion with constant angle of attack. Thus, with V(x ,  t )  = constant, and 
using? (4.1) to evaluate q5*, equations (6.18) and (6.20) may be integrated along 
the body length to give the total lift force 

where in the last integral the parameters al, and P are evaluated a t  the trailing 
edge x = l,, and the added mass is assumed to vanish a t  the nose x = - I N .  
For a slender body of revolution, with radius R = ~ ( x ) ,  the streamlines ( U ,  $oll, $,,) 
are determined by the stream function @ = - i U ( R 2 - r 2 ) ,  and hence (y*,x+) 
and (4, x) are related by the streamline equation R2 - r2 = constant. 

t It should be noted that the use of (4.1) to evaluate & on the tail is valid if, and only 
if, the tail fin span is less than the width of the vortex sheet shed from the upstream fins. 
In  the converse case, however, we have by definition that at = /I. and hence the integral 
in (7.1) vanishes identically. Thus for a body with ‘re-entrant’ tail fins, of span greater 
than the width of the upstream trailing vortex sheets, the lift force is identical to the 
classical result for a body with a single pair of fins at the tail; in other words, the vortex 
sheets generated by the upstream lifting surfaces are completely ‘re-absorbed’ by the 
tail fins. 
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FIGURE 3. The misymmetric body with symmetric fins. 

First, we shall assume the appendages to be symmetrical, as shown in figure 3, 
with leading edges at y = f b(x)  and the first trailing edges a t  x = 0, and the 
tail-fin trailing edges at x = 1,. The appropriate (circle) conformal transformation 
corresponding to (3.5) is 

T = 5+r2//Q ( 7 4  

on the body, 

on the fins. 
where p =  (2r  

b + r2/b 

The subsequent formulae are simplified by introducing the notation 

r(0)  = ro, b(0)  = b,, b(lT) = b,, 

and = “2(1T) = aT,  

where al = a2 by virtue of the fin symmetry. 
From (7.2) it follows that 

r* = ?I* +rily* 

and thus ,8* = b,+ri/b,,. 

(7.3) 

(7.4) 

At the tail, since the body radius vanishes, we have 

T = Y  (7.5) 

and p = bT. (7.6) 

y$ -rX = y2, (7 .7)  

a& = bt-rg. (7.8) 

Finally, from the streamline equation, 

where y is evaluated at the tail. From (7.5) and (7.7) the parameter a, is de- 
termined by the equation 

Using (7.3) and (7.4) to evaluate Pt -T$ ,  equation (7.1) then takes the form 

44 F L M  57 
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where the relation m(Z,) = npb$ has been used for the added mass of the tail fin. 
Changing the dummy variable rl to u by means of the equation 

r2 1 - - ,(a$ - b$) v + *(a$ + b$) (7.10) 

permits (7.9) to  be written in the simpler form 

(7.11) 
L = -a-pU~b"-pUV(a$-b$)Sl l ( - - )  l - v h + v  9 dv, 

l + v p + w  

where h = (2a"rib,2+a$+b$)/(a"-b$) 

and p = (2ri +a$ + b$)/(a$ - b$). 

Equation (7.11) is the final result expressing the lift force on the symmetrical 
finned body of revolution. In  the special case r ,  = 0, a, = b,, while p = A, and 
the integral in (7.11) is equal to  a-, so that the classical flat-plate, low-aspect-ratio 
lift force L = - n p  U Vbi  is recovered, confirming that the lift is proportional to 
the square of the maximum span. (Recalling the footnote on page 688, it follows 
that L = -a-pUVb$ if b, > bo.) The other special case for which (7.11) can be 
evaluated analytically is b, = r,, or a body without upstream fins; in this case it 
follows from the definition of ai that aT = b,, and hence L = -a-pUVb$, again 
in accordance with the classical results (cf. Thwaites 1960, p. 452). 

For more general configurations, (7.11) can be expressed in terms of complete 
elliptic integrals of the first, second and third kind, but this reduction is cumber- 
some and will not be repeated here. Numerical integration is straightforward, 
however, and the results are shown in figure 4. Here the total lift force is non- 
dimensionalized in terms of the factor a-p U Vb& resulting in a lift coefficient which 
would be equal to unity for a flat delta wing of span 2b,. Figure 4 shows this 
lift coefficient as a function of the parameter ro/bo, or the ratio of body radius to 
semi-span a t  the first trailing edge. Curves are plotted for different values of the 
tail-span ratio b,/b,, ranging from bT = 0 for a body without tail fins to a 
maximum value of bT = (bi - T;)&. Beyond the latter limit, or above the dashed 
curve in figure 4, the tail fins are 're-entrant' and, as noted in the footnote on 
page 688, the lift coefficient then depends only on the square of the tail semi-span 
b,, and is independent of r,/b,, as shown by the horizontal portions of each curve. 
With the exception of this re-entrant regime, we see that the tail fins have 
a relatively small effect on the total lift force, but the effects of body thickness are 
much more important, resulting in a substantial reduction of the total lift force 
by comparison with the classical results based on the maximum span, or on the 
added-mass coefficient of the finned-circle a t  the maximum span position. 

As an alternative example, we consider the asymmetric configuration shown 
in figure 5, where only one upstream fin is present. Equation (7.2) is then replaced 
by the mapping function 

7 = 9+co+r2/6,  (7.12) 
where the equations 

- p  = -22ro+co, 

p = b, + 2ri/b0 + c, 
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FIGURE 4. Lift coefficient of the axisymmetric body with symmetric fins shown in figure 3. 
The dashed envelope is the re-entry point where the tail-span equals the width of the 
vortex sheet, and for larger values of bT the lift coefficient is independent of b, and ro 
as shown. 

FIGURE 5. The axisymmetric body with asymmetric tail fins and one upstream fin. 

determine the parameters /? and c, at  x = 0, and b, = b2(0) is the span of the 
upstream fin. Similarly, at  the tail x = Z T ,  

7 = c+ cT7 (7.13) 

where -PT = - b l T f C T 7  

PT = b2T f cT 

and blT = bl(ZT), b2T E b2(ZT). Once again the streamlines are determined by the 
equation R2- r2(x) = constant, and hence in this case it follows that 

?+ = [$ + (TI  - CT)2]' + c() + rt[ri f (ql- cT)2]-'- (7.14) 
44-2 
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FIGURE 6. Lift coefficient of the axisymmetric body with asymmetric fins shown in figure 5. 
-, symmetric tail configuration (blT = b z T ) ;  -.-, single upper tail fin (blT = 0). The 
curve b,,/b, = 0 is for a body without tail flns. Note that the symmetric tail fin carries 
a positive lift force, whereas the upper tail fin experiences a negative lift force due to the 
effects of downwash. 

Substituting these results in (7.1) then gives the total lift force in the form 

(7.15) 

where PT' = 8r(blTS.b2T)7 

a2T = (bg-f$)'+$(blT-b2T) 
and 

N ( 7 )  = {Yg+ [ r - B ( b l ~ - b 2 , ) ] ~ ~ + r g { r g +  [ ? I - $ ( ~ ~ T - - ~ Z T ) ] ' } - * .  

Calculations based on (7.15) are shown in figure 6, for the case of a symmetric 
tail fin (blT = bzT) by solid lines, and also for a single upper tail fin (blT = 0)  by 
broken lines. The lift coefficient is defined as in figure 4, and plotted as a function 
of the ratio ro/bo for various tail-fin widths b,&,. For ro/b,, = 0,  or the case of 
a planar foil, the configuration with b,, = 0 agrees with classical low-aspect-ratio 
theory, the lift being equal to ) r p U  Vb:, since in this case b, is the maximum span. 
However, for the symmetrical tail configuration b,, = bZT the classical results 
are not valid, since there is a new (lower) leading edge at  the tail which interacts 
with the vortex sheet on the opposite side of the foil, so that in this case the lift 
is not simply related to the total span b, + blT, but takes a value slightly less than 
&rp UV(b,  + blT)2, which would apply if the vortex sheet were filled in by an ex- 
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tension of the foil. Nevertheless, the tail fins do carry a substantial lift force in 
this case, as compared with the single tail fin (blT = 0)  or the symmetrical 
configuration of figure 4, because here the lower tail fin is free of downwash 
effects,? as evidenced by the significant increase of lift for increasing values of blT. 

The effects of body thickness, or increasing values of ro/bo, are quite striking 
in figure 6. Here, unlike the symmetric arrangement of figure 4, small or moderate 
values of body thickness increase the lift force, with a maximum value generally 
around ro/bo = 0.3. Thereafter, the lift force decreases, as the fins become small 
relative to the body thickness, and for r,,/bo = 1 the limiting case of a bare 
axisymmetric body without lift is recovered. 
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t Physical considerations suggest that, in fact, the lower tail fin will experience an 
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